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Abstract 

Expressions for the kinemat ic  scattering of  X-rays by 
electrons are obtained f rom the Pauli Hamil tonian .  
In addi t ion to the modified electron density, relativity 
is shown to contribute with an addit ional  term, the 
kinetic form factor. A formula  for this term is given 
for one-electron atoms. 

1. Introduction 

Relativistic quan tum mechanics  leads in some cases 
to a considerable  modificat ion of  the electron distri- 
but ion in atoms,  molecules and solids as compared  
to non-relativistic results, and the use of  relativistic 
electron densities in the calculation of  a tomic form 
factors for X-ray crysta l lography has become stan- 
dard  (Cromer  & Waber ,  1974; see also Hubbel l  & 
0verb~ ,  1979). In the present  paper ,  we study the 
impact  of  relativistic theory on the equat ions for the 
scattering ampli tude.  Our  study is based on the Pauli 
equat ion,  which represents the conceptual ly simplest 
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approach ,  where compar i son  with the non-relativistic 
expressions is most  s t ra ightforward.  In addit ion,  this 
approach  has the advantage  of  being independent  of  
the choice of  relativistic N-par t ic le  theory,  which is 
still a p rob lem containing many  unsett led quest ions 
(Grel land,  1981; Mit t leman,  1981; Sucher,  1980; 
Buchmiiller & Dietz, 1980). All theoret ical  
approaches  to this problem lead to the Pauli equat ion 
in the first approximat ion .  The calculation results 
presented in § 4 show that  the Pauli approx imat ion  
is adequate  for  the present  purpose.  With this me thod  
it becomes possible to relate the relativistic correc- 
tions due to relativistic scattering theory directly to 
the form of  the non-relativistic wave function.  Thus 
a t ransparen t  picture of  the form and size of  the 
correction is provided,  which can be used in relativis- 
tic electron density studies based on X-ray crystallo- 
graphic  measurements .  

The present  theory is restricted to the first Born 
approximat ion ,  and higher-order  effects (anomalous  
scattering) must  be added  by a separate  calculation.  
Thus, the me thod  cannot  be directly compared  to 
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methods based on second-order theory in the Dirac 
representation (see, however, the comment in § 4 on 
the results of Cromer & Liberman, 1970). Note that 
the unitary transformation relating the two rep- 
resentations does not conserve the order-by-order 
expansion in c -2. [A derivation of the first Born 
scattering expression in the Dirac representation is 
given by Grelland (1984).] 

The non-relativistic theory of purely elastic kine- 
matic (i.e. first Born aproximation) scattering is 
reviewed by e.g. Feil (1977), where further details can 
be found (note the different choice of electromagnetic 
units). In this theory, the scattering factor F(q) is a 
functional of the electron density p(x), 

where 

p(x) = 

F(q) = d3 p(x) exp ( - i q .  x) dx, ( 1 ) 

E J I~(xx=. . .x~)l  = dx2 . . .dxN (2) 
all spin B~ 3N-3 

and q = ]ql = 4rr sin (½0)/A, A = X-ray wavelength, 
0 = scattering angle, N = number of electrons. In the 
Hartree-Fock approximation, which is the one 
usually applied for the calculation of p, 

p(x) -- E I~j(x)l 2, (3) 
J 

where {q~j} are the orbitals. We will reserve the word 
form factor to mean the function F(q) defined by (1). 
We will show that the relativistic scattering factor 
within the 1/c 2 approximation is the form factor with 
the relativistic density plus the more complicated term 
(14), depending on q~p2, which we denote the kinetic 
form factor. 

We will restrict ourselves to the treatment of atomic 
(kinetic) form factors, since this is the only place in 
the theory where the relativistic corrections are of 
any importance for X-ray crystallography. As is cus- 
tomary, we assume spherical symmetry, which implies 
that (1) can be replaced by 

F ( q ) = ( 1 / q ) ~ p ( r ) s i n ( q r ) r d r .  (4) 
o 

Moreover, spin-dependent photon-electron coupling 
terms will be neglected. 

2. The Pauli approximation 

Before considering the relativistic scattering factor, 
we make some remarks on the nature of the Pauli 
approximation. 

The Pauli equation is a perturbation equation. This 
means that it cannot be solved as an eigenvalue 
equation Hp~b = E$, where 

H p = H s +  V (5) 
N 

Y : -  ~, [pj-F(e/c)Aj]4/8m3¢2-F Hspin-F HDarwin ( 6 )  
j = l  

and Hs is the SchrSdinger Hamiltonian (Moss, 1973, 
p. 176). In fact, lip has quite surprising properties 
(AlmlSf, Faegri & Grelland, 1984). It has no lower 
bound to the energy, and it has no bound eigenstates. 
Mathematically, Hp has a continuous spectrum that 
is unbounded below (but bounded above !). However, 
the Pauli Hamiltonian represents a proper relativistic 
approximation if V is used as a perturbation on the 
eigensolutions of Hs. 

Let PR = po+Ap be the relativistically corrected 
electron density, where Po is the non-relativistic one. 
Then Ap may be calculated from the wave function 
6, which may be obtained in one of two ways. 

The lowest-order correction to $ can be calculated 
by perturbation theory, with V as the perturbation. 
Or else, the relativistically corrected $ can be 
obtained from a Dirac-type wave function by a Pryce- 
Foldy-Wouthuysen transformation, see e.g. Snijders 
& Pyykk5 (1980). This procedure is sufficiently accur- 
ate in a c -2 approximation. Note that the Dirac 
densities cannot be used directly, because they belong 
to a different representation. Physically, they are 
probability distributions over a different kind of 
position. 

We also note that the order-by-order argument of 
perturbation theory implies that the kinetic form fac- 
tor can be calculated from a non-relativistic wave 
function to give a c 2 accuracy. 

3. The kinetic form factor 

Kinematic scattering is induced by interactions quad- 
ratic in the components of the photon field. From the 
non-relativistic kinetic energy 

T =  [p+ (e l  c)A]2/2m (7) 

we obtain the quadratic term 

Uo=(e2/2mc2)A2, (8) 

where - e  = electron charge, m = electron mass and 
A is the Coulomb gauge photon field. This term leads 
to a scattering factor of the form (1) (Fell, 1977). 

From the first-order relativistic correction to the 
kinetic-energy expression 

T, = - [ p + ( e / c ) A ] 4 / 2 m ( 2 m c )  2, (9) 

we obtain two quadratic terms 

U'~ = -[e2/2mc2(2mc)2](A2p 2 + p2A2) (10) 

U'[=-[4e2/2mc2(2rnc)2](A.p)  2. (11) 

It is shown by a straightforward integration over the 
angular components in the spherical coordinate sys- 
tem that 

3((A. p )2 ) :  (A2p2)= (p2A2) (12) 

for a spherically symmetric electronic state. Hence, 
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U~ + U~' may be replaced by the operator equivalent 

UI = -~( 1/m2c 2) Uop 2, (13) 

from which one derives, in analogy with the non- 
relativistic treatment, the kinetic form factor 

oo 
K ( q ) = - ( 5 / 6 m 2 c 2 ) q - l  ~ rl(r) s i n (qr ) rdr .  (14) 

0 

In the one-particle case (or for the orbital contribution 
in the Hartree-Fock case), ~7 has the form 

~7(r)=-(b(r)r-2d[(r2d/dr)~b(r)] /dr .  (15) 

In the N-particle case: 

~ 7 ( r ) = - S r  -2 dr[(r 2 d / d r ) p ( r ;  r')]/drlr=r, , (16) 

where p(r;  r') is the non-diagonal first-order density 
matrix (McWeeny & Sutcliite, 1969, ch. 4). 

The total scattering factor becomes 

F t o t ( q ) = F ( q ) + A F ( q ) + K ( q ) ,  (17) 

where 
oo 

A F ( q ) = ( 1 / q )  ~ zap(r) s i n (qr ) rdr .  (18) 
0 

In this paper, we have mainly considered the term 
K ( q ) .  To obtain the total relativistic correction to 
S(q) ,  A F ( q )  has to be calculated as well. This is the 
object of a forthcoming paper (Grelland, 1985). 

To give an idea of the behaviour of the kinetic form 
factor, we have derived the formula for a hydrogen- 
like atom with nuclear charge Z in the ground state, 
i.e. with the wave function 

tp(r) = 2Z 3/2 exp ( - Z r ) .  (19) 

The non-relativistic form factor is given by the 
formula 

F ( x )  = z a ( z  2 + 47r2a2x2) -2, (20) 

where x = sin (0 /2) /A (/~-1)= q/4"rrao, and ao is the 
Bohr radius in ~ngstr6ms. Equations (14), ( 15 )and  
(19) combine to give the correction formula 

K (x) = 5 2 Z 6 ( Z  2 + 4 7"/-2 a2x2) -2 

-~aEzS(z2+47r2a2x2) - l ,  (21) 

where a is the fine-structure constant. 

4. C o m m e n t s  

The kinetic form factor can be seen from (21) to be 
small, but within the accuracy of the standard tables 
of form factors used in crystallography. Its size for 
x = 0 is closely related to the binding energy of the 
electron. From the virial theorem, we have at x = 0: 

K(O) = - 5 ( p 2 ) / 6 m 2 c  2 

= - 5 ( T ) / 3 m c  2 

= 5 E / 3 m c  2. (22) 

It is interesting to note that (22) equals expression 
(19) of Cromer & Liberman (1970). This indicates 
that the term -fg- + f -  - f o  of that paper corresponds 
to the correction that we identify as due to relativistic 
interaction, wh i l e f  + represents the proper anomalous 
scattering in the usual sense. Such a conclusion is 
valid only close to the non-relativistic limit. 

The presence of the kinetic form factor puts a limit 
on the accuracy in the direct determination of electron 
densities from scattering factors through (1), in par- 
ticular in the relativistic domain. To increase the 
accuracy, one will probably have to go via a determi- 
nation of the non-diagonal first-order density matrix 
(16) and a calculation of the function 

p( r) - 5rl( r) / 6m2 c 2, (23) 

which is the inverse Fourier transform of the total 
scattering factor. The function r/(r) is known to 
be very sensitive to the form of the wave function 
(Grelland & Alml/Sf, 1982). 

The present method represents a substantial sim- 
plification, both conceptual and calculational, com- 
pared to the traditional methods using the Dirac 
representation. Since the correction can be calculated 
from non-relativistic wave functions, it is possible to 
use wave functions of high accuracy, e.g. including 
correlation. Moreover, the result is easy to compare 
to the non-relativistic approximation, since the same 
representation is used, and since the total scattering 
factor has the form of a sum of various physical 
interpretable terms, (17). 

I am indebted to one of the referees for drawing 
my attention to the result of Cromer & Liberman 
mentioned in § 4. 
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